Alkoxyhydrosilanes as Sources of Silylene Ligands: Novel Approaches to Transition Metal–Silylene Complexes

Takahiro Sato, Masaaki Okazaki,* and Hiromi Tobita*

Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578

(Received April 26, 2004; CL-040469)

Irradiation of Fe(CO)₅ and HSiMe₂OR (R = alkyl or aryl group) together with hexamethylphosphoric triamide (HMPA) produces (CO)₄Fe=SiMe₂•HMPA and SiMe₂(OR)₂. Even in the absence of HMPA, irradiation of Fe(CO)₅ and HSiMe₂O-(2-C₅H₄N) affords (CO)₃(H)Fe{SiMe₂···O(2-C₅H₄N)···SiMe₂}. In these reactions, the alkoxyhydrosilanes act as sources of the silylene ligand.

Silylene complexes of the type $L_n M$ =SiR₂ have attracted much attention as intermediates in transition metal-mediated transformation reactions of organosilicon compounds, such as the dehydrogenative coupling of hydrosilanes and redistribution of substituents on silicon atoms.¹ Our recent interest has focused on the incorporation of alkoxysilanes into the catalytic cycles that supply organosilicon compounds.² We report here a novel method to prepare $L_n Fe$ =SiMe₂ complexes using HSiMe₂OR as a starting material of the silylene ligand.

Photoreactions of $Fe(CO)_5$ and 2 equiv. HSiMe₂OR in the presence of hexamethylphosphoric triamide (HMPA) are summarized below.

$$Fe(CO)_{5} + HSiMe_{2}OR (2 equiv.) + HMPA (1 equiv.)$$

$$1a-1e$$

$$\xrightarrow{h\nu} (OC)_{4}Fe=SiMe_{2} \cdot HMPA + SiMe_{2}(OR)_{2}$$

$$abcorrectored beta = SiMe_{2} \cdot HMPA + SiMe_{2}(OR)_{2}$$

$$3a-3e$$

$$(1)$$

Table 1. Irradiation of $Fe(CO)_5$ with HSiMe₂OR (1) (2 equiv.) for 10 min in the presence of HMPA in benzene- d_6

Silane 1a–e	Yield/% (NMR) ^a			
	$1a-e^{b}$	2	3а-е	
HSiMe ₂ OMe (1a)	23	19	31	
HSiMe ₂ OEt (1b)	38	9	31	
$HSiMe_2O^iPr(1c)$	46	3	25	
$HSiMe_2O^tBu$ (1d)	79	0	9	
HSiMe ₂ OPh (1e)	50	6	31	

^a based on the molar amount of Si. ^b unchanged.

Typically, a Pyrex NMR tube was charged with 1,3,5-⁷Bu₃C₆H₃ (ca. 1 mg, internal standard), HMPA (5.4 mg, 0.030 mmol), benzene- d_6 (300 µL), HSiMe₂OMe (**1a**) (5.3 mg, 0.059 mmol), and Fe(CO)₅ (6.0 mg, 0.031 mmol) in that order. The tube was flame-sealed under high vacuum, and the sample was irradiated under a 450 W medium-pressure Hg lamp at 10 °C. After irradiation for 10 min, the ¹H NMR spectrum of the reaction mixture showed signals assignable to **1a** (23%), (CO)₄Fe= SiMe₂•HMPA (**2**) (19%), and SiMe₂(OMe)₂ (**3a**) (31%). The yields were based on the molar amount of Si and determined by comparing the relative intensities of the signals between each product and an internal standard 1,3,5-^rBu₃C₆H₃. Identification of **2** was performed by comparison of the NMR data with those in the literature: The synthesis of **2** was first achieved by Zybill et al. by reaction of Na₂Fe₂(CO)₄ and Me₂SiCl₂ in the presence of HMPA.³ Recently, Tessier et al. found that a doubly silylene-bridged diiron complex Fe₂(μ -SiMe₂)₂(CO)₈ reacted with HMPA to produce **2**.⁴ Eq 1 describes the novel pathway to the silylene complexes from alkoxyhydrosilanes via cleavage of the silicon–oxygen bond. Prolonged irradiation, for 120 min in total, caused the complete consumption of **1a**, yet reduced the yield of **2** to 4%. The decrease is attributable to the photo-sensitivity of **2** as reported by Zybill et al.³ The introduction of bulky OR groups on the silicon atom retarded the reaction to give **2** in only low yields. The rate of reaction and yield of **2** both decrease in the following order: OME > OEt > O⁷Pr ≈ OPh ≫ O'Bu.

In order to observe the intermediates of the reactions in Eq 1, we examined the photoreaction of $Fe(CO)_5$ and 1 equiv. HSiMe₂OR in the absence of HMPA. The reactions gave (CO)₄(H)Fe(SiMe₂OR) (**4**) and **3** (Eq 2) in the yields listed in Table 2.⁵ The introduction of bulkier substituents on the silicon atom would slow oxidative addition of the hydrosilane, leading to lower yields of **4**. The iron complex corresponding to the formation of **3** was not detected by NMR spectroscopy.

$$Fe(CO)_{5} + HSiMe_{2}OR \quad (1 \text{ equiv.})$$

$$1a-1e$$

$$\xrightarrow{h\nu} (OC)_{4}Fe-SiMe_{2}OR + SiMe_{2}(OR)_{2} \quad (2)$$

$$\xrightarrow{-CO}_{benzene-d_{5}} \quad 4a-4e \quad 3a-3e$$

Table 2. Irradiation of Fe(CO)₅ and HSiMe₂OR (1) (1 equiv.) in benzene- d_6 in the absence of HMPA

Silane 1a–e	Irradiation Time	Yield/% (NMR) ^a		
		1а-е	4а-е	За-е
HSiMe ₂ OMe (1a)	10 min	30	49	10
HSiMe ₂ OEt (1b)	30 min	29	45	10
$HSiMe_2O^iPr$ (1c)	30 min	35	41	11
$HSiMe_2O^tBu$ (1d)	30 min	53	24	12
HSiMe ₂ OPh (1e)	30 min	39	48	4

^a based on the molar amount of Si.

A possible mechanism for the formation of **2** and **3** is shown in Scheme 1. It is reasonable to consider the initial generation of $(CO)_4(H)Fe(SiMe_2OR)$ (**4**) via dissociation of CO from Fe(CO)₅ and subsequent oxidative addition of HSiMe₂OR. Further photolysis can induce the dissociation of the second CO, and subsequent oxidative addition of another alkoxyhydrosilane, reductive elimination of H₂, and re-coordination of CO produce $(CO)_4Fe(SiMe_2OR)_2$ (**A**), although we have not observed the NMR signals corresponding to **A**. Pomeroy et al. have already synthesized both $(CO)_4(H)Fe(SiMe_3)$ and $(CO)_4Fe(SiMe_3)_2$ by photoreaction of Fe(CO)₅ and HSiMe₃.⁶ In complex **A**, a nucleophilic OR group in one silyl ligand might quickly attack the silicon atom in the other silyl ligand to yield SiMe₂(OR)₂ and (OC)₄Fe=SiMe₂ (**B**). Coordination of HMPA onto the silylene silicon atom of **B** finally gives **2**. Milstein et al. reported a similar observation, regarding the formation of SiR'₂(OR)₂ from a bis(alkoxysilyl) complex, in the thermolysis of *fac*-(PMe₃)₃-(H)Rh{Si(OMe)₃}₂ at 55 °C for 72 h to afford *fac*-(PMe₃)₃-(H)2Rh{Si(OMe)₃} (major product), Si(OMe)₄ (10%), and (MeO)₃SiSi(OMe)₃ (2%).⁷ Bergman et al. also reported the formation of Si(OEt)₄ and Cp*(PMe₃)(H)Ir{Si(OEt)₂OTf} (Cp* = η^5 -C₅Me₅, OTf = OSO₂CF₃) in the reaction of Cp*(PMe₃)-Ir(Me)(OTf) and HSi(OEt)₃ at 25 °C for 5 min. They proposed a mechanism involving the generation of [Cp*(PMe₃)(H)-Ir{Si(OEt)₃}₂]OTf that excludes Si(OEt)₄.⁸

Sc	heme	1

A different type of reaction occurred when the OR group was 2-pyridyloxy. Thus, irradiation of Fe(CO)₅ and 1 equiv. HSiMe₂O(2-C₅H₄N) (**5**) for 30 min at 15 °C gave a base-stabilized silyl(silylene) complex, (CO)₃(H)Fe{SiMe₂…O(2-C₅H₄N)…SiMe₂} (**6**) in 41% NMR yield based on Si. The complex **6** was isolated in 16% yield as a yellow powder, which precipitated from hexane at -30 °C.⁹ In the ¹H NMR spectrum of **6**, the Fe–H signal was observed at δ –9.95. The ²⁹Si NMR showed two signals at δ 74.9 and 96.0, both of which are in a typical region for the base-stabilized silylene complexes.^{1c} We previously reported a similar chelate Cp*(CO)Fe{SiMe₂…O(2-C₅H₄N)… SiMe₂}, for which the silylene character of both silicon atoms was supported by ²⁹Si NMR and X-ray crystal structure analy-sis.¹⁰

A plausible formation mechanism for 6 is illustrated in Scheme 2. Similar to Scheme 1, it begins with the generation of hydrido(silyl) complex C. In this reaction, the intramolecular nitrogen atom plays a crucial role in abstracting a proton from the iron center. The interaction of FeH with a less basic ether oxygen in 4 or C must be negligible. The reaction pathway is similar to that in Schmid's synthesis of the first silyleneiron complex (CO)₄Fe=SiMe₂·NHEt₂ from Fe(CO)₅ and HSiMe₂-NEt₂.¹¹ The formation of $(CO)_4$ Fe·SiMe₂ (**B**) is again supported by the experiment in the presence of HMPA giving 2 (46% NMR yield based on Si of 5). We previously reported that elimination of 2-pyridone from $Cp^{*}(CO)(H)Fe{SiMe_2O(2-C_5H_4N)}_2$ was induced by AlEt₃. In that case, 2-pyridone reacted with AlEt₃ to give EtH and AlEt₂O($2-C_5H_4N$).² On this occasion, the generated 2-pyridone would be effectively trapped by coordinatively unsaturated iron carbonyls such as $Fe(CO)_4$.¹²

In conclusion, we have developed two novel routes to transition-metal silylene complexes using alkoxyhydrosilanes. As silylene complexes can be involved in the catalytic pathway for metal-catalyzed synthesis of polysilanes,¹ this work demonstrates the potential utility of alkoxyhydrosilanes as good sources of polysilanes.

This work was supported by Grants-in-Aid for Scientific Research (Nos. 14204065 and 14078202) and a Grant-in-Aid for JSPS Fellows (No. 07182) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References and Notes

- a) C. Zybill, H. Handwerker, and H. Friedrich, Adv. Organomet. Chem., 36, 229 (1994).
 b) J. Y. Corey and J. Braddock-Wilking, Chem. Rev., 99, 175 (1999).
 c) H. Ogino, Chem. Rec., 2, 291 (2002).
 d) M. Okazaki, H. Tobita, and H. Ogino, Dalton Trans., 2003, 493.
- 2 T. Sato, H. Tobita, and H. Ogino, Chem. Lett., 2001, 854.
- 3 C. Leis, D. L. Wilkinson, H. Handwerker, C. Zybill, and G. Müller, *Organometallics*, **11**, 514 (1992).
- 4 R. S. Simons, K. J. Galat, J. D. Bradshaw, W. J. Youngs, C. A. Tessier, G. Aullón, and S. Alvarez, *J. Organomet. Chem.*, 628, 241 (2001).
- 5 NMR Spectral data of (CO)₄(H)Fe(SiMe₂OEt) (**4b**) in benzene- d_6 : ¹H NMR δ –9.45 (s, 1H, FeH), 0.55 (s, 6H, SiMe₂), 1.09 (t, 3H, J = 7.0 Hz, CMe), 3.50 (q, 2H, J = 7.0 Hz, OCH₂). ¹³C NMR δ 8.8 (SiMe₂), 18.6, 58.0 (Et), 206.1, 210.4 (FeCO). ²⁹Si NMR δ 48.4. Complexes **4a**, **4c**, **4d**, and **4e** were also characterized by NMR.
- 6 R. Krentz and R. K. Pomeroy, Inorg. Chem., 24, 2976 (1985).
- 7 M. Aizenberg, J. Ott, C. J. Elsevier, and D. Milstein, J. Organomet. Chem., 551, 81 (1998).
- 8 S. R. Klei, T. D. Tilley, and R. G. Bergman, *Organometallics*, 21, 3376 (2002). In this paper, a possibility of Ir-mediated redistribution of HSi(OEt)₃ to give H₂Si(OEt)₂ and Si(OEt)₄ was also mentioned.
- 9 Data of **6**: ¹H NMR (benzene- d_6) δ –9.95 (s, 1H, FeH), 0.60 (s, 6H, SiMe₂), 0.82 (s, 6H, SiMe₂), 5.85, 6.14, 6.65, 7.20 (1H × 4, C₅H₄N). ¹³C NMR (benzene- d_6) δ 9.6, 10.8 (SiMe₂), 116.5, 118.6, 139.7, 144.3, 163.5 (C₅H₄N), 214.0 (FeCO). ²⁹Si NMR (benzene- d_6) δ 74.9, 96.0. IR (hexane, cm⁻¹) 2050 sh, 2023 vs, 2002 vs, 1969 s. (ν_{CO} , the middle two peaks may be assigned to Fe(CO)₅.) Mass (EI, 70 eV) 351 (M⁺, 4), 267 (M⁺–3CO, 18), 152 (SiMe₂OC₅H₄N⁺, 100). We were not able to determine the configuration around Fe because **6** showed unidentified fluxional behaviors and decompositions.
- 10 H. Tobita, T. Sato, M. Okazaki, and H. Ogino, *J. Organomet. Chem.*, **611**, 314 (2000).
- 11 G. Schmid and E. Welz, Angew. Chem., Int. Ed., 16, 785 (1977).
- 12 Upon photolysis, $Fe(CO)_5$ smoothly reacted with 2-hydroxypyridine to give unidentified products with evolution of H₂.